
Innovati’s Gamepad PS

PS2 Gamepad Control Module
Version: V1.0

Product overview:
Innovati’s GamepadPS module provides simple settings and position obtaining commands with 12
buttons, enabling the user to plan his/her desired operating modes. By connecting cmdBUS and
BASIC Commander, you can use simple commands to establish communication with the PS2
gamepad to obtain the button information and create dedicated application commands.

Applications:
 Connect a robot and set up the buttons for advanced and movement control purposes.
 Operate various test tools and machines.
 Control a variety of remote control cars and aircraft when used with the wireless PS2 gamepad.
 Control a variety of application kits by Innovati, Inc.

Features:

 It is easy to set. Various applications can be implemented with the dedicated commands simply
by connecting cmdBUS to the BASIC Commander.

 The sticks can be set for analogue return and 4-way or 8-way stick position return.
 The origin of the stick can be freely set to a variable between 0 and 10% to avoid jitter.
 The D-pad can be set for 4-way or 8-way stick position return.
 There are 12 function buttons that can be controlled separately or together.
 Calibration is provided with a calibration button. Operation can be interrupted at any time to

perform calibration on the stick.
 Customizable button functions, including the time at which the button continuous trigger starts

or the continuous trigger rate, can be set via commands.
 You can enable the lock feature for the analogue stick to avoid accidental press.
 Customizable gamepad vibration strength and duration.

Connection: Flip ID switch to the number to be set and connect the cmdBUS to the corresponding
pins on the BASIC Commander. You can perform operations via the BASIC Commander after a
PS2 gamepad is connected.

It is easier to connect the module if you place the
BASIC Commander on the board that provides the
cmdBUS pins.

Note the direction of the pins when the

cmdBUS is used to connect to the module.

Connect the optional PS2 gamepad

Connect the optional PS2 gamepad

These are cmdBUS pins
which are connected to the
cmdBUS and BASIC
Commander. Note their
direction from the left to
right are: Vin, Gand, SDA,
SCL, EVT, SYN.

The module number switch where the
module number is set in binary format.
Switch 1 indicates high level. A switch
flipped up means 1 while a switch flipped
down means 0. The set number shown in the
figure is 31.

This is the calibration button
that starts calibration.
Pressing and holding it for 3
to 5 seconds starts
calibration. Note that all
commands are invalid during
calibration.
This is the calibration
indicator. When calibration
starts, it lights up
continuously and goes off
after calibration is complete.
If it blinks, calibration failed.

Product specifications :

L * W * H: 47 * 31* 16 (㎜)

Operating notes:

Module operating temperature -40 ℃~ 123.8 ℃
Module storage temperature -40 ℃~125℃
The module is suitable for the use with the genuine PS2 gamepad. The use of the aftermarket PS2
gamepad is not guaranteed.
How to perform calibration:
1: Press and hold the calibration button for a specific period of time (or via software) to enter

Calibration mode. The calibration indicator lights up continuously.
2: Push the stick you want to calibrate up all the way and turn it full two turns to get maximum and

minimum values of the XY axes.
3: Finally, center the stick and wait for 3 second to make the stick establish the center of the XY axes.
4: Press the function buttons (△, ○, , □) to finish calibration. The calibration indicator goes off.
※ If the calibration indicator blinks, calibration failed. Perform calibration again.

If you accidentally enter Calibration mode, pressing the calibration button again exits this mode.

D-pad

Left stick
(L JoyStick)
Function
buttons: L3

Right stick
(R JoyStick)
Function button: R3

Function buttons:
△, ○, , □

Function buttons:
R1、R2 Function buttons: R1、R2

H

W

L

Function buttons: Select、Start

Command Table:
The following command table shows various commands specifically designed to control the
GamepadPS module where the names and parameters of the required commands are shown in bold
type or in bold and italic type. Do not change the text in bold type and fill in the appropriate
parameters to replace the text in bold and italic type. Note that text is not case-sensitive for
innoBASIC Workshop.
Before running GamepadPS commands, define the corresponding parameters and number at the
beginning of your program.

 For example:Peripheral ModuleName As GamepadPS @ ModuleID

Command format Command function
Related gamepad calibration commands

LStickCalibration()

Start Calibration mode for the left stick.

After this command is executed, the stick enters
Calibration mode and the calibration LED
continuously lights up. At this time, push it up all
the way and turn it full two turns to get
maximum and minimum values of the XY axes.
Center the stick and wait for 3 second to make
the stick establish the center of the XY axes.
Finally press the function buttons to exit. The
LED goes off and the calibration is complete.
※
If the calibration LED blinks, calibration failed.
Function buttons: △, ○, ╳, □

RStickCalibration()

Start Calibration mode for the right stick.

After this command is executed, the stick enters
Calibration mode and the calibration LED
continuously lights up. At this time, push it up all
the way and turn it full two turns to get
maximum and minimum values of the XY axes.
Center the stick and wait for 3 second to make
the stick establish the center of the XY axes.
Finally press the function buttons to exit. The
LED goes off and the calibration is complete.
※
If the calibration LED blinks, calibration failed.
Function buttons: △, ○, ╳, □

StickCalibration()

Simultaneously start calibration mode for the left
and right sticks.
After this command executed, the sticks enter
Calibration mode and the calibration LED
continuously lights up. At this time, push them
up all the way and turn them full two turns to get
maximum and minimum values of the XY axes.
Center the sticks and wait for 3 second to make
the sticks establish the center of the XY axes.
Finally press the function buttons to exit. The
LED goes off and the calibration is complete.
※
If the calibration LED blinks, calibration failed.
Function buttons: △, ○, ╳, □

SetCalibrationLX(LxMin,LxCen,LxMax)

Set the calibration value of the X axis of the left
stick. Three Byte parameters are required which
are: LxMin, which indicates the minimum stick
calibration value; LxCen, which indicates the
center point; and LxMax, which indicates the
maximum stick calibration value.
※ Note the setting sequence during the manual

settings.
Enter an integer value between 0~255.

SetCalibrationLY(LyMin,LyCen,LyMax)

Set the calibration value of the Y axis of the left
stick. Three Byte parameters are required which
are: LyMin, which indicates the minimum stick
calibration value; LyCen, which indicates the
center point; and LyMax, which indicates the
maximum stick calibration value.
※ Note the setting sequence during the manual

settings.
Enter an integer value between 0~255.

SetCalibrationRX(RxMin,RxCen,RxMax)

Set the calibration value of the X axis of the
right stick. Three Byte parameters are required
which are: RxMin, which indicates the minimum
stick calibration value; RxCen, which indicates
the center point; and RxMax, which indicates the
maximum stick calibration value.
※ Note the setting sequence during the manual

settings.

Enter an integer value between 0~255.

SetCalibrationRY(RyMin,RyCen,RyMax)

Set the calibration value of the Y axis of the
right stick.
Three Byte parameters are required which are:
RyMin, which indicates the minimum stick
calibration value; RyCen, which indicates the
center point; and RyMax, which indicates the
maximum stick calibration value.
※ Note the setting sequence during the manual

settings.
Enter an integer value between 0~255.

GetCalibrationLX(LxMin,LxCen,LxMax)

Get the calibration value of the X axis of the left
stick.
The minimum value is stored in LxMin, the
center point is stored in LxCen and the
maximum value is stored in LxMax.
The return value is an integer value between
0~255.

GetCalibrationLY(LyMin,LyCen,LyMax)

Get the calibration value of the Y axis of the left
stick.
The minimum value is stored in LyMin, the
center point is stored in LyCen, and the
maximum value is stored in LyMax.
The return value is an integer value between
0~255.

GetCalibrationRX(RxMin,RxCen,RxMax)

Get the calibration value of the X axis of the
right stick.
The minimum value is stored in RxMin, the
center point is stored in RxCen, and the
maximum value is stored in RxMax.
The return value is an integer value between
0~255.

GetCalibrationRY(RyMin,RyCen,RyMax)

Get the calibration value of the Y axis of the
right stick.
The minimum value is stored in RyMin, the
center point is stored in RyCen, and the
maximum value is stored in RyMax.
The return value is an integer value between
0~255.

Related setting commands

RestoreSettings()

Running this command restores the settings to
the factory defaults as the following shows:
． The range of all calibration values is set to:

Min=0, Cen=128, Max=255
． The range of the center point of the stick is set

to: 5 %
． The limit range value of the stick is set to:

80 %
． Turn off the rapid fire feature.
． Set the resolution of the stick to: 128
． Turn off all events
． Turn off the vibration feature.

SetLStickDeadZone(DZx,DZy)

Set the range of the center point of the left stick.
The range of the central zone of the stick is set
by DZx and DZy, which define the central zone
of the XY axes. The input is an integer value
between 0~10 in percentage.
When the stick is moved within the set zone, it is
determined that it is at the center point.

SetRStickDeadZone(DZx,DZy)

Set the range of the center point of the right
stick.
The range of the central zone of the stick is set
by DZx and DZy, which define the central zone
of the XY axes. The input is an integer value
between 0~10 in percentage.
When the stick is moved within the set zone, it is
determined that it is at the center point.

GetLStickDeadZone(DZx,DZy)

Get the setting of the central range of the left
stick.
The settings of the XY axes are stored in DZx
and DZy respectively. The return value is an
integer between 0~10 in percentage.

GetRStickDeadZone(DZx,DZy)

Get the setting of the central range of the right
stick.
The settings of the XY axes are stored in DZx
and DZy respectively. The return value is an
integer between 0~10 in percentage.

SetLStickSaturation(SATx,SATy)

Set the limit range value of the left stick.
SATx and SATy are used to set the limit range
value of the XY axes. The input is an integer
value between 60~100 in percentage.
After the command is executed, only the
maximum value or minimum value will be
returned, regardless whether positive or negative.
For the set scale value, only the division
calculation is performed between the maximum
value and minimum value.

SetRStickSaturation(SATx,SATy)

Set the limit range value of the right stick.
SATx and SATy are used to set the limit range
value of the XY axes. The input is an integer
value between 60~100 in percentage.
After the command is executed, only the
maximum value or minimum value will be
returned, regardless whether positive or negative.
For the set scale value, only the division
calculation is performed between the maximum
value and minimum value.

GetLStickSaturation(SATx,SATy)

Get the limit range value of the left stick.
The settings of the XY axes are stored in SATx
and SATy respectively. The return value is an
integer between 60~100 in percentage.

GetRStickSaturation(SATx,SATy)

Get the limit range value of the right stick.
The settings of the XY axes are stored in SATx
and SATy respectively. The return value is an
integer between 60~100 in percentage.

SetLStickRes(RESx,RESy)

Set the resolution of the left stick.
RESx and RESy are used to set the resolutions
of the XY axes respectively for the number of
scales to be divided within the recognizable
range.
Set the scale to an integer between 0~128.
As 0 is also counted, setting 128 indicates that
128 scales are divided from 0 to 127 positively
or from 0 to -127 negatively. Note that while 0
and 1 can also be input, the XY values gotten
will be 0 after setting.

SetRStickRes(RESx,RESy)

Set the resolution of the right stick.
RESx and RESy are used to set the resolutions
of the XY axes respectively for the number of
scales to be divided within the recognizable
range.
Set the scale to an integer between 0~128.
As 0 is also counted, setting 128 indicates that
128 scales are divided from 0 to 127 positively
or from 0 to -127 negatively. Note that while 0
and 1 can also be input, the XY values gotten
will be 0 after setting.

GetLStickRes(RESx,RESy)

Get the resolution setting of the left stick.
The settings of the XY axes are stored in RESx
and RESy respectively. The return value is an
integer between 0~128 in percentage.

GetRStickRes(RESx,RESy)

Get the resolution setting of the right stick.
The settings of the XY axes are stored in RESx
and RESy respectively. The return value is an
integer between 0~128 in percentage.

SetKeyRepeatFunc(Key_ID)

Set whether rapid input is enabled or not.
Enable = 1, Disable = 0

Key_ID

Bit
Corresponding
button

Decimal

0 △ 1
1 ○ 2
2 4
3 □ 8
4 L1 16
5 R1 32
6 L2 64
7 R2 128
8 Select 256
9 Start 512

10 L3 1024

11 R3 2048

EX: If you want to enable it for △, ○,
Key_ID can be set to:
&B11 (binary) or 3 (decimal).

GetKeyRepeatFunc(Key_ID)

Get the information about whether rapid input is
enabled or not.
Enable = 1, Disable = 0

Key_ID

Bit
Corresponding
button

Decimal

0 △ 1
1 ○ 2
2 4
3 □ 8
4 L1 16
5 R1 32
6 L2 64
7 R2 128
8 Select 256
9 Start 512
10 L3 1024
11 R3 2048

SetRepeatTime(Time)

Set the amount of time during which rapid input
is enabled.
Time is used to configure. You can enter an
integer ranging between 0~255 in 10 ㎳.

GetRepeatTime(Time)

Get the information about the amount of time
during which rapid input is enabled.
The return value is stored in Time. The return
value is an integer ranging between 0~255 in
10 ㎳.

SetRepeatRate(Rate)

Set the rate at which the rapid input is
performed.
Rate is used to configure. You can enter an
integer ranging between 0~255 in 10 ㎳.

GetRepeatRate(Rate)

Get the information about the rate at which the
rapid input is performed.
The return value is stored in Rate. The return
value is an integer ranging between 0~255 in
10 ㎳.

Related application commands

GetLXYPos(POSx,POSy)

Get the coordinate value of the left stick.
Return the XY coordinates which are stored in
POSx and POSy respectively. The default is
-127~+127.

GetRXYPos(POSx,POSy)

Get the coordinate value of the right stick.
Return the XY coordinates which are stored in
POSx and POSy respectively. The default is
-127~+127.

GetL4WayValue(Dir)

Four ways are used to indicate direction. Get the
position of the left stick.
The return value is stored in Dir and indicates
direction. The return values are only the numbers
0~4 which are:
0: Stick at center point 1: Stick to the right→
2: Stick downward↓ 3: Stick to the left←
4: Stick upward↑

GetR4WayValue(Dir)

Four ways are used to indicate direction. Get the
position of the right stick.
The return value is stored in Dir and indicates
direction. The return values are only the numbers
0~4 which are:
0: Stick at center point 1: Stick to the right→
2: Stick downward↓ 3: Stick to the left←
4: Stick upward↑

GetL8WayValue(Dir)

Eight ways are used to indicate direction. Get the
position of the left stick.
The return value is stored in Dir and indicates
direction. The return values are only the numbers
0~8 which are:
0: Stick at center point
1: Stick to the right→
2: Stick to the downright↘
3: Stick downward↓
4: Stick to the downleft↙
5: Stick to the left←
6: Stick to the upleft↖
7: Stick upward↑
8: Stick to the upright↗

GetR8WayValue(Dir)

Eight ways are used to indicate direction. Get the
position of the right stick.
The return value is stored in Dir and indicates
direction. The return values are only the numbers
0~8 which are:
0: Stick at center point
1: Stick to the right→
2: Stick to the downright↘
3: Stick downward↓
4: Stick to the downleft↙
5: Stick to the left←
6: Stick to the upleft↖
7: Stick upward↑
8: Stick to the upright↗

Status = GetKeyStatus()

The button status gotten is stored in Status.
Enable = 1, Disable = 0

Status

Bit Corresponding
button Decimal

0 △ 1
1 ○ 2
2 ✕ 4
3 □ 8
4 L1 16
5 R1 32
6 L2 64
7 R2 128
8 Select 256
9 Start 512
10 L3 1024
11 R3 2048

EX: If Status = 3, it is enabled for △, ○.

GetDir4Way(Dir)

Get the D-pad status and return a value to
indicate direction.
The return value is stored in Dir. The return
values are only the numbers 0~4 which are:
0: None
1: Right →
2: Down ↓
3: Left ←
4: Up ↑

GetDir8Way(Dir)

Get the D-pad status and return a value to
indicate direction.
The return value is stored in Dir. The return
values are only the numbers 0~8 which are:
0: None 1: Right→
2: Downright ↘ 3: Down↓
4: Downleft ↙ 5: Left←
6: Upleft ↖ 7: Up ↑
8: Upright ↗

SetAnalog(Mode)

Set the status of the analogue sticks.
Mode is used to configure. You can enter a value
between 0 and 3 as shown below:
0: Turn off analogue sticks
1: Enable analogue return for analogue sticks
2: Lock analogue sticks and set them to

analogue on
3: Lock analogue sticks and set them to

analogue off
※ Default: 1 (On)
0 and 1 are Off Mode and Enable Mode
respectively. After setting, the buttons on the
stick can be used to switch between modes.
2 and 3 are Lock Modes.
After setting, the buttons on the stick cannot
be used to switch between modes.
Mode 0 and 1 cannot also be used to switch to
normal mode. Keep this in mind during use.

StartVib(Time,Level)

Enable the gamepad vibration feature. Time is
used to configure. Level is used to set the
vibration level.
Time: An integer ranges between 0~255.
0: Continues vibration until the StopVib

command is given.
1 indicates 1 second with an increment of 100
ms when one is added.
Level: An integer ranges between 0~255.
0: No vibration. The higher the number is, the

stronger the vibration is 1~255.

StopVib() Stop the gamepad vibration feature.

GetVibStatus(Status,Time,Level)

Get the gamepad vibration status.
The return values are stored in Status, Time and
Level respectively.
Status: Gamepad vibration status.
0: Vibration disabled.
1: Vibration enabled.
Time: Remaining time of vibration.
0: Vibration status is 0 and vibration stoPS when

the StopVib command is given.
1: The remaining time is less than 1 second.
2~255: Remaining 1+(Time-1)*100 ㎳
Level: Set the vibration level ranging between
0~255 之間。

GetAnalog(Mode)

Get the setting status of the analogue stick.
The return value is stored in Mode.
The return value may be 0 or 1,where:
0: Disable
1: Enable (Whether it is locked is unknown.)

GetConnect(Status)

Get the connection status of the gamepad.
It is stored in Status.
The return value may be 0 or 1,where:
0: gamepad is not detected.
1: gamepad is properly connected.

Related application event commands

SetStickRefreshRate(Rate)

When the stick is set to continuous refresh, it is
the fastest rate at which an EVENT is generated.
Rate ranges between 1~255 in 10ms.
The values other than 1~255 are invalid.
0 and 1 indicate 10ms.

GetStickRefreshRate(Rate)

Get the fastest rate at which EVENT is generated
when the stick is set to continuous refresh.
The return value is stored in Rate ranging
between 1~255 in 10ms.

EnableLStickEvent()
Enable StickEvent of the left stick.
The SetStickRefreshRate command determines
the generation rate.

DisableLStickEvetn() Disable StickEvent of the left stick.

EnableRStickEvent()
Enable StickEvent of the right stick.
The SetStickRefreshRate command determines
the generation rate.

DisableRStickEvetn() Disable StickEvent of the right stick.
EnableL4WayEvent() Enable 4WayEvent of the left stick.
DisableL4WayEvent() Disable 4WayEvent of the left stick.
EnableR4WayEvent() Enable 4WayEvent of the right stick.
DisableR4WayEvent() Disable 4WayEvent of the right stick.
EnableL8WayEvent() Enable 8WayEvent of the left stick.
DisableL8WayEvent() Disable 8WayEvent of the left stick.
EnableR8WayEvent() Enable 8WayEvent of the left stick.
DisableR8WayEvent() Disable 8WayEvent of the left stick.
EnableKeyPressedEvent() Enable KeyPressedEvent.
DisableKeyPressedEvent() Disable KeyPressedEvent.
EnableKeyRelesedEvent() Enable KeyRelesedEvent.
DisableKeyRelesedEvent() Disable KeyRelesedEvent.
EnableDir4WayEvent() Enable Dir4WayEvetn.
DisableDir4WayEvent() Disable Dir4WayEvetn.
EnableDir8WayEvent() Enable Dir8WayEvetn.
DisableDir8WayEvent() Disable Dir8WayEvetn.
Application events provided by module:

Event Enable conditions

LStickEvent
The event is generated when the left stick starts movement.
Return is performed based on the frequency set by SetStickEvent.

RStickEvent
The event is generated when the right stick starts movement.
Return is performed based on the frequency set by SetStickEvent.

L4WayEvent
The event is generated when the left stick changes its direction.
It is not related to SetStickEvent.

R4WayEvent
The event is generated when the right stick changes its direction.
It is not related to SetStickEvent.

L8WayEvent
The event is generated when the left stick changes its direction.
It is not related to SetStickEvent.

R8WayEvent
The event is generated when the right stick changes its direction.
It is not related to SetStickEvent.

KeyPressedEvent

It is common to all buttons.
When RepeatKey is disabled, press any button to generate the
event.
When RepeatKey is enabled, press any button and the event is
generated based on the time set by RepeatTime and the rate
set by RepeatRate.

KeyReleasedEvent
It is common to all buttons.
The event is generated when the action set by KeyRelese is

detected.
Dir4WayEvent The event is generated when the D-pad status changes.
Dir8WayEvent The event is generated when the D-pad status changes.
CalibrationEndEvent The event is generated when the calibration ends. Always Enable

ConChangeEvent
The event is generated when it is determined that the gamepad is
connected or disconnected. Always Enable

Sample program:
Peripheral PS As GamePadPS @ 31 'Set the module number
Dim b4Dir As Byte 'Store the direction value gotten
Dim b8WayL,b8WayR As Byte 'Store the direction value of the stick gotten
Dim wStatus As Word 'Store the button status value gotten

Sub Main()
PS.EnableKeyPressedEvent() 'Enable button pressed event
PS.EnableKeyReleasedEvent() 'Enable button release event
Debug "///// GamePadPS Demo ////" 'Terminal Window shows plan
Debug CSRXY(1,2),"Direction:"
Debug CSRXY(1,3),"RStick8Way:"
Debug CSRXY(1,4),"LStick8Way:"
Debug CSRXY(1,5),"GetKeyStatus:"

Do
PS.GetDir4Way(b4Dir) 'Get the D-pad status by returning the 4-way directions
Debug CSRXY(11,2),b4Dir 'Display in Terminal Window (column 11 and row 2)
PS.GetR8WayValue(b8WayR) 'Get the right stick status by returning one of the 8-way directions
Debug CSRXY(12,3),b8WayR 'Display in Terminal Window (column 12 and row 3)
PS.GetL8WayValue(b8WayL) 'Get the right left status by returning one of the 8-way directions
Debug CSRXY(12,4),b8WayL 'Display in Terminal Window (column 12 and row 4)
Debug CSRXY(15,5),%BIN12 wStatus 'Display Loop in binary format in Terminal Window

(column 15 and row 5)
Loop

End Sub

Event PS.KeyPressedEvent() 'Button pressed event
wStatus = PS.GetKeyStatus 'Get the current button status and store it in wStatus

End Event

Event PS.KeyReleasedEvent() 'Button release event
wStatus = PS.GetKeyStatus 'Get the current button status and store it in wStatus

End Event

Appendix
Module Number Switch Table:

1 0234
0

1 0234
8

1 0234
16

1 0234
24

1 0234
1

1 0234
9

1 0234
17

1 0234
25

1 0234
2

1 0234
10

1 0234
18

1 0234
26

1 0234
3

1 0234
11

1 0234
19

1 0234
27

1 0234
4

1 0234
12

1 0234
20

1 0234
28

1 0234
5

1 0234
13

1 0234
21

1 0234
29

1 0234
6

1 0234
14

1 0234
22

1 0234
30

1 0234
7

1 0234
15

1 0234
23

1 0234
31

